Unity + Koog: Drive your game from a Kotlin Agent
Open on GitHub Download .ipynb
This notebook walks you through building a Unity-savvy AI agent with Koog using the Model Context Protocol (MCP). We'll connect to a Unity MCP server, discover tools, plan with an LLM, and execute actions against your open scene.
Prerequisites - A Unity project with the Unity-MCP server plugin installed - JDK 17+ - An OpenAI API key in the OPENAI_API_KEY environment variable
1) Provide your OpenAI API key
We read the API key from the OPENAI_API_KEY
environment variable so you can keep secrets out of the notebook.
val token = System.getenv("OPENAI_API_KEY") ?: error("OPENAI_API_KEY environment variable not set")
val executor = simpleOpenAIExecutor(token)
2) Configure the Unity agent
We define a compact system prompt and agent settings for Unity.
val agentConfig = AIAgentConfig(
prompt = prompt("cook_agent_system_prompt") {
system {
"You are a Unity assistant. You can execute different tasks by interacting with tools from the Unity engine."
}
},
model = OpenAIModels.Chat.GPT4o,
maxAgentIterations = 1000
)
3) Start the Unity MCP server
We'll launch the Unity MCP server from your Unity project directory and connect over stdio.
// https://github.com/IvanMurzak/Unity-MCP
val pathToUnityProject = "path/to/unity/project"
val process = ProcessBuilder(
"$pathToUnityProject/com.ivanmurzak.unity.mcp.server/bin~/Release/net9.0/com.IvanMurzak.Unity.MCP.Server",
"60606"
).start()
4) Connect from Koog and run the agent
We discover tools from the Unity MCP server, build a small plan-first strategy, and run an agent that uses only tools to modify your open scene.
import kotlinx.coroutines.runBlocking
runBlocking {
// Create the ToolRegistry with tools from the MCP server
val toolRegistry = McpToolRegistryProvider.fromTransport(
transport = McpToolRegistryProvider.defaultStdioTransport(process)
) + ToolRegistry {
tool(ProvideStringSubgraphResult)
}
toolRegistry.tools.forEach {
println(it.name)
println(it.descriptor)
}
val strategy = strategy<String, String>("unity_interaction") {
val nodePlanIngredients by nodeLLMRequest(allowToolCalls = false)
val interactionWithUnity by subgraphWithTask<String>(
// work with plan
tools = toolRegistry.tools,
) { input ->
"Start interacting with Unity according to the plan: $input"
}
edge(
nodeStart forwardTo nodePlanIngredients transformed {
"Create detailed plan for " + agentInput + "" +
"using the following tools: ${toolRegistry.tools.joinToString("\n") {
it.name + "\ndescription:" + it.descriptor
}}"
}
)
edge(nodePlanIngredients forwardTo interactionWithUnity onAssistantMessage { true })
edge(interactionWithUnity forwardTo nodeFinish transformed { it.result })
}
val agent = AIAgent(
promptExecutor = executor,
strategy = strategy,
agentConfig = agentConfig,
toolRegistry = toolRegistry,
installFeatures = {
install(Tracing)
install(EventHandler) {
onBeforeAgentStarted { eventContext ->
println("OnBeforeAgentStarted first (strategy: ${strategy.name})")
}
onBeforeAgentStarted { eventContext ->
println("OnBeforeAgentStarted second (strategy: ${strategy.name})")
}
onAgentFinished { eventContext ->
println(
"OnAgentFinished (agent id: ${eventContext.agentId}, result: ${eventContext.result})"
)
}
}
}
)
val result = agent.run(
" extend current opened scene for the towerdefence game. " +
"Add more placements for the towers, change the path for the enemies"
)
result
}
5) Shut down the MCP process
Always clean up the external Unity MCP server process at the end of your run.